Starch-enriched diet modulates the glucidic profile in the rat colonic mucosa

Posted by: | April 14, 2017 | Comments



The protective function of the intestinal mucosa largely depends on carbohydrate moieties that as a part of glycoproteins and glycolipids form the epithelial glycocalyx or are secreted as mucins. Modifications of their expression can be induced by an altered intestinal microenvironment and have been associated with inflammatory disorders and colorectal cancer. Given the influence of dietary factors on the gut ecosystem, here we have investigated whether a long term feeding on a starch-rich diet can modulate the glucidic profile in the colonic mucosa of rats.


Animals were divided into two groups and maintained for 9 months at different diets: one group was fed a standard diet, the second was fed a starch-enriched diet. Samples of colonic mucosa, divided in proximal and distal portions, were processed for microscopic analysis. Conventional stainings and lectin histochemistry were applied to identify acidic glycoconjugates and specific sugar residues in oligosaccharide chains, respectively. Some lectins were applied on adjacent sections after sialidase/fucosidase digestion, deacetylation, and oxidation to characterize either terminal dimers or sialic acid acetylation.


An increase in sulfomucins was found to be associated with the starch-enriched diet that affected also the expression of several sugar residues as well as fucosylated and sialylated sequences in both proximal and distal colon.


Although the mechanisms leading to such a modulation are at present unknown, either an altered intestinal microbiota or a dysregulation of glycosylation patterns might be responsible for the types and distribution of changes in the glucidic profile here observed.

Discover more at: Springer Link \ European Journal of Nutrition

Gabrielli, M.G. & Tomassoni, D. Eur J Nutr (2017). doi:10.1007/s00394-017-1393-3

Stay up-to-date!
Email Address *
First Name
Last Name

* indicates required

Terms & Conditions | Privacy Policy | © 2018 The Translational Microbiome Research Forum